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Recognizing the need for a more detailed scientific understanding of the human impact on climate, signif-
icant advancements have been made in our ability to both measure and model the Earth system. A close
integration of observations and models is essential for advancing our understanding of this system. Data
assimilation is the process to dynamically integrate information from measurements into models. Sensor
network configuration is the process of using model results to dynamically steer the measurement process.
The exascale era opens exciting opportunities for using highly complex models in data assimilation, for
utilizing huge volumes of data from a myriad of sensors, and for configuring complex observation networks
such as to maximize the informational benefit.

In a variational approach the data assimilation problem is posed as an inverse problem, where parameters are
adjusted such that the model predictions best fit the measurements. Sensor network configuration is realized
in an optimization framework and relies on high order sensitivities. Current variational approaches face
considerable challenges at extreme scales. The optimization approach taken in four dimensional variational
(4D-Var) data assimilation does not parallelize well, due to the iterative and synchronous nature of tradi-
tional numerical optimization schemes. Adjoint models employed in gradient based optimization require
to checkpoint enormous amounts of data - full state snapshots of the forward simulation. Characterizing
uncertainty in the data and in the models is complex, and misspecification of these error covariances great
affects the quality of the results.

We discuss several key directions that offer great opportunities for mathematical innovation, and where
fundamental advances are needed in order to enable variational data assimilation to harness the power of
future exascale systems.

Adjoint models. Adjoint models are an essential ingredient for the solution of inverse problems. They
provide the gradients of the cost function with respect to model state and parameters, to be used in optimiza-
tion and apostriori error analyses, among other. The construction of adjoints for complex exascale models
will become increasingly challenging due to the multiphysics nature of the applications, and to the large data
that needs to be check-pointed in a distributed manner. On the positive side adjoint models inherit the paral-
lel structure of the forward models, and . The the use of automatic differentiation tools [15, 17] is expected
to become essential in the future. Also, the use of second order adjoints to provide Hessian-vector products
valuable for sensitivity analysis, optimization, and observation impact studies, will become important.

Weakly constrained 4D-Var. The perfect model assumption, on which current variational data assimila-
tion systems rely, breaks down when the length of the assimilation window increases. Since the model is
inexact, the inference adjusts the model parameters such as to compensate for model inaccuracies. Therefore
long window assimilation results, such as carbon flux estimates, can be heavily corrupted by the errors in
the underlying model. To address this problem the focus will shift to the weak constraint 4D-Var framework
which accounts for all sources of error that impact data assimilation: prior, data, and model. The long as-
similation window, and the weak constraint 4D-Var approach, bring a number of significant computational
challenges. Estimates of model errors are needed in this approach, but they are difficult to obtain; more-
over, it may not be possible to disambiguate model and data errors. The optimization problem increases in
size, and becomes more ill-conditioned [21, 22]. The cost per iteration increases (at least) linearly with the
window length.
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Scalable 4D-Var formulations. New mathematical ideas need to be explored to make weak constraint
4D-Var feasible at the exascale; they include dual formulations in observation space, preconditioning, par-
allelization, and the use of approximate and reduced order models. Dual formulation of 4D-Var [6]) defines
the control variables in the observation space [24] and leads to smaller optimization problems. The saddle
point formulation trades the size of systems to be solved for more opportunities for parallelism. Long inter-
val assimilation can be reformulated by shifting the assimilation window forward in time [21]. Suboptimal
approaches employ simplified adjoints, e.g., based on reduced order models [1, 9]). New opportunities for
parallelization in time are opened by the weak constraint formulation. During optimization the model, tan-
gent linear, and adjoint solutions on different sub-windows can proceed in parallel. To reduce the number of
optimization iterations adequate preconditioners need to be studied, such as approximate inverse Hessians
[12, 13], limited memory approximations [23], and temporal multigrid [4].

Model errors. The statistical description of model error is one of the main challenges in data assimilation.
To carry out long window 4D-Var assimilation one needs to estimate both the model bias and the model error
covariance. Biases are expected values of the systematic and slowly growing model errors, while covari-
ances characterize small random errors which evolve on time scales shorter than the assimilation window
[21]. Pragmatic assumptions on the statistical distribution of the errors are necessary to develop computa-
tionally feasible covariance models. Homogeneous and isotropic correlation functions have been used for
modeling spatial error correlations [14, 16] and the Kronecker (tensor) product allows the construction of
high-dimensional spatio-temporal statistical models [5, 7]. The parameters of these models can be found
from and tendency differences between ensembles of model runs.

Biases can corrupt the model, observations, and observation operators [11]. The variational approach can
naturally estimate biases by including them as additional model parameters [10, 18, 21]. Bias and parameter
estimation are essentially the same problem. It is difficult to disambiguate biases coming from different
sources (e.g., model versus observation biases). Variational bias correction works best in situations where
there is sufficient redundancy in the data, or where the model biases are small [11]. Robust inversion
algorithms are needed where the inference results are correct regardless of whether one can fully apportion
biases to sources.

Hybrid variational-ensemble algorithms. Hybrid algorithms, combining the benefits of sampling/ensemble
based and variational methods, constitute a highly promising approach to assimilation. New methods need
to be developed to fully solve the parameter estimation problem and provide a quantitative representation
of posterior uncertainty in state and parameter optimal estimates [2]. An important new idea is the random-
ized implicit sampling [19]. Ensembles can represent complex posterior distributions, e.g., multimodal or
non-symmetric; moreover, it captures the correlations between uncertainties in state and in parameters, as
well as cross-correlations between uncertainties in different parameters. Weighted ensemble averages pro-
vide unbiased minimum variance estimators of the state and parameters, in contrast to the biased maximum
likelihood estimators obtained by 4D-Var.

Sensor network configuration. Quantification of the data impact on inference results is required in order
to address important issues such as assessing the contribution of each individual observation to the forecast
error reduction, extracting the maximum of information from a sparse data set, thinning massive data sets,
and configuring sensor networks. Promising algorithms involve high order derivatives, and singular value
decompositions to identify the most important components in both the model and the data spaces. Novel
data analysis techniques are necessary to quantify the uncertainty in assessing the value of various observ-
ing system components [8], [20]. Information theoretic concepts to quantify the contribution of different
sensors, and to define optimal configurations, are expected to become increasingly important in the future.
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